Thursday, April 9, 2020

The Fundamentals of Coal Gasification

Gasification is a thermal process that converts any carbon-based material, including coal, petroleum coke, refinery residuals, biomass, and municipal solid waste, into energy without burning it. The carbon-containing feedstock is reacted with either air or oxygen which breaks down the mixture into simple molecules, primarily carbon monoxide and hydrogen (CO+H2), called “synthesis gas” or “syngas”. The undesirable emissions from gasification can be much more easily captured because of the higher pressure and (often) concentration compared to conventional pulverized coal-fired power plants.


Gasifiers capture the energy value from coal, petroleum coke, refinery wastes, biomass, municipal solid waste, wastewater treatment biosolids, and/or blends of these materials. Examples of potential feedstocks that can be gasified and their phases include:
  • Solids: All types of coal, petcoke, and biomass, such as wood waste, agricultural waste, household waste, and hazardous waste
  • Liquids: Liquid refinery residuals (including asphalts, bitumen, and oil sands residues) and liquid wastes from chemical plants and refineries
  • Gases: Natural gas or refinery/chemical off-gas
Gasifying Fluid

Gasifiers utilize either oxygen or air during gasification. Most gasifiers that run coal, petroleum coke, or refinery or chemical residuals use almost pure oxygen (95–99% purity). The oxygen is fed into the gasifier simultaneously with the feedstock, ensuring that the chemical reaction is contained in the gasifier vessel. Generally, gasifiers that employ oxygen are not cost effective at the smaller scales that characterize most waste gasification plants.


The core of the gasification process is the gasifier, a vessel where the feedstock(s) reacts with the gasification media at high temperatures. There are several basic gasifier designs, distinguished by the use of wet or dry feed, the use of air or oxygen, the reactor’s flow direction (up-flow, down-flow, or circulating), and the syngas cooling process. There are also gasifiers designed to handle specific types of coal (e.g., high- ash coal) or petcoke.

Prior to gasification, solid feedstock must be ground into small particles, while liquids and gases are fed directly. The amount of air or oxygen that is injected is closely controlled. The temperatures in a gasifier for coal or petcoke typically range from 1400° to 2800°F (760–1538°C). The temperature for municipal solid waste typically ranges from 1100° to 1800°F (593–982°C).

Currently, large-scale gasifiers are capable of processing up to 3000 tons of feedstock per day and converting 70–85% of the carbon in the feedstock to syngas.


Although syngas primarily consists of CO+H2, depending up on the specific gasification technology, smaller quantities of methane, carbon dioxide (CO2), hydrogen sulfide, and water vapor could also be present. The CO:H2 ratio depends, in part, on the hydrogen and carbon content of the feedstock and the type of gasifier. This ratio can be adjusted or “shifted” downstream of the gasifier through the use of catalysts. Ensuring the optimal ratio is necessary for each  potential  product. For example, refineries that produce transportation fuels require syngas that contains significantly greater H2 content. Conversely, a chemicals production plant uses syngas with roughly equal proportions of CO and H2. This inherent flexibility of the gasification process means that it can produce one or more products from the same process.

Some downstream processes require that the trace impurities be removed from the syngas. Trace minerals, particulates, sulfur, mercury, and unconverted carbon can be removed to very low levels using processes common to the chemical and refining industries.


Most solid and liquid feed gasifiers produce a glass-like byproduct called slag, composed primarily of sand, rock, and minerals contained in the gasifier feedstock. This slag is non- hazardous and can be used in roadbed construction, cement manufacturing, and in roofing materials.

Underground Coal Gasification

With underground coal gasification (UCG), the actual gasification process takes place underground, generally below 1200 feet in depth, although recent advances in well-drilling technologies now make UCG possible at much deeper conditions (i.e., 4000–6000-ft depth range).

The UCG reactions are managed by controlling the rate of oxygen or air that is injected into the coal seam through the injection well. The process is halted by stopping this injection. After the coal is converted to syngas in a particular location, the remaining cavity (which will contain the leftover ash or slag from the coal, as well as other rock material) may be flooded with saline water and the wells are capped. However, there is a growing interest in using these cavities to store CO2 that could be captured from the above-ground syngas processing or even nearby combustion facilities. Syngas from UCG can also be treated to remove trace contaminants; once CO2 storage is added, UCG offers another opportunity to achieve a coal-based, low-carbon source of energy and carbon-based products. Once a particular coal seam is exhausted (after up to 15 years), new wells are drilled to initiate the gasification reaction in a different section of the coal seam.

UCG operates at pressures below that of the natural coal seam pressure, thus ensuring that materials are not pushed out into the surrounding formations. This is in contrast to hydraulic fracturing operations in oil and gas production, where pressures significantly above natural formation pressure are used to force injectants into the formation.


As explained, gasification can be used to yield a number of carbon-containing products, including several simultaneous products at polyproduction facilities.

Gasification is a complex process with decades of development behind it. The future of gasification technologies promise to improve on the work that has already been done.

Source: Alison Kerester - Executive Director, Gasification Technologies Council

The 10 largest coal producers and exporters in Indonesia:

  1. Indo Tambangraya Megah (ITMG)
  2. Bukit Asam (PTBA)
  3. Baramulti Sukses Sarana (BSSR)
  4. Harum Energy (HRUM)
  5. Mitrabara Adiperdana (MBAP)
  6. Adaro Energy (ADRO)
  7. Bumi Resources (BUMI)
  8. Samindo Resources (MYOH)
  9. United Tractors (UNTR)
  10. Berau Coal